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We consider qnasilinear systems of neutral type with constant coeffi- 
cients and with constant positive deviations 

,pjz(P) (t - rj) = f (1) + pF (t, z (t), z (1 - TI). . . . 9 x(t -- t,& I’) 

or, briefly 

Uz=f+kF (1) 

Here p is a small parameter, and 

s(t) = {Xl (f), * * . (2, (1)). f (U = If1 (4 s . . .1 f, (f)}, F = (Fl, . ., F,) 

Opj = II llpjsk II (s. k = I, . . . , n) 

The function F is continuous in t and has a period 217 ; with a constant 
small p and with values of x(t), x(t - ri) lying within a certain region 
G of the domain of these variables, it has continuous partial derivatives 
of the first order; the function f(t) is a continuous periodic function 
of period 2n . 

With the aid of the principle of compressed mapping. we demonstrate 
the existence of a unique periodic solution, which for p = 0 reduces to 
the solution of the corresponding generating equation. Nonresonant, re- 
sonant and “exceptional” cases are represented [l 1. 

1. Nonresonant case. We assume that no integral frequencies exist for 
the characteristic equation 

~(h)=l A ( E + 2 a,je-).-j ) + i aoje-“j 1 = 0 

i-1 j=l 

(2) 
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corresponding to Equation (1). 

We shall consider a closed subset Cp(O < t g 277 ) of such functions 
for which x( “(0) = x( ‘l(2n )(i = 0, 1, . . ., p); these functions are 
loested inside the interval (0, 2~) such that they are periodic with a 
period 2s. In this sense we shalX speak of periodic functions in the 
domain C 

P 
(-OO< t < + OO). 

We consider the generating system 

iJ.Z=f 13) 

The left-hand side of (3) determines the operator U, having meaning 
in every case for any function x in CI. The value of If is an arbitrary 

function in C. 

It is easy to prove that U is a linear (i.e. additive and continuous) 
operator. Since (2) has no integral frequencies, then Us = 8 only for 
x = 0. 

Indeed, the operator U exists and establishes a one-to-one correspond- 

ence between the complete domains C, and C, In agreement with the theorem 
of Banakh [ 2 1 the inverse operator U-1 is linear. It follows that 

Consequently. for a single periodic solution of the system (3) we 
have the estimate 

I xs” (t) I d c&f (4) 

where M is determined by the condition 1 f,l G M. By use of the estimate 

(4) we apply the principle of compressed mapping for sufficiently small 
p to the equation 

in a class of functions reducing for p = 0 to the solution x*(t) of the 
generating system (3) (supposing that x0(t) e G ). From this, the theorem 
follows. 

Theorem f. The system (1) in the nonresonant case has, for a suffi- 
ciently small p, a unique periodic solution of period 277, reducing for 
/A = 0 to the solution of the generating system (3). 

2. Resonant ease. let Equation (2) have a finite number of integral 
frequencies and let $w = Cs exp iN,(r = 1, . . . , r) corresponding to the 
periodic solutions of the homogeneous system Ux = 8. In this case a 
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periodic so&&ion does not ordinarily exist and the function f(t) must 
satisfy certain conditions, 

Along with the system (3) we consider the conjugate system, According 
to the theorem of Riss on the domain C, the linear functianal is 

where % eli?r, is B periodic function of 5 %ith period 2n CVa den&es the 
set of all regular functtons with $(Oj = 01, rf, d$) is a scalar product 
of the vector functions f and d$, For determination of the conjugate 
system we have U*g = gC&r). 8fe abtain, after simple calcuZations 

Vg = g (Uz) 

Canseguently. Pg = 8 on the functionsls with iCr,{t) = q&*(t) - q&,'(O), 

where 45sl* fs a periodic solution of the system 

Here alj* and aoj* are transposed matrices (the fundamental equation 
corresponding to (5) has roo+ts differing in sign from those for Equation 

(2)). 

Banakh established the theorem that the system Ux =T f can be solved 
only when g(f) = 0 follows from B*g = 8. 

Indeed, for the system (3) to have a periodic solution in the resonant 
case the function fCt) arust satisfy the following r condttlons: 

Functions f(t) satisfying the conditions (6) evidently generate a 
linear and closed set which we call N. Consequently, we have U(C,) = N. 
The solution of the system (3) may be written in the form 

%O (t) = $j Mm%s* (4 + x, IO 11 x, (‘) I G c-w 
m-1 

Here X’ft) is a particular so&&ion of the homo~emeo~s system (31, C* 
is a can&ant independent of the form of fCt), since aocording to the 
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previously mentioned Banakh theorem the operator 17 is a homomorphism of 
the domain Cl on N. 

The method of successive approximations leads in the case of resonance 
to the following expressions: 

(8) 

Here F(‘-‘) = F(t, ~(‘-~)(t), ~(‘-‘)(t- fj), p), and Ls(F(z-l)) 

represents a particular solution of the system (7) corresponding to a 
known function F(l- ‘) of time; the coefficients Ma ( 1) are determined 

from the condition of the absence of resonating terms on the right-hand 
side of the system 

P, (M&‘), 

If in the class 

3z 

. . . ) &f’;‘, p) = ’ (F(l), cp 
I m *) dt = 0 (m=l,...,r) (9) 
II 

of functions reducing to the solution of the generat- 
ing system with I’ = 0 there exists a solution to the basic system (l), 
then for p = 0 all x (I)(*) must reduce to x0(t) in the successive approxi- 
mations to the exact solution x(t, p). As is evident from (8) and (9), 
this requires that the constants Ml”, . . ., Mro be determined from the 
equation 

?r;n 

P,,,O (Ml’, . . ., hlro, 0) = 

For this, the condition 

8(P1°, . 1 . , P,“) 

a (Ml”, . . .,lVrO) =#=O 

must be fulfilled. 

One may then show that application of the principle of compressed 
mapping is similar to that in the work of Malkin 13 1. The theorem 
follows. 

(11) 

Theorer 2. In order that the system (1) have a solution x(t, /.L), re- 
ducing for p = 0 to the solution of the generating system x0 (t), it is 
necessary that a unique periodic solution of (1) exist, reducing for 
p = 0 to the solution of the generating system, with condition (11) being 
satisfied to assure fulfilment of condition (10). 
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Note 1. The problem of finding 
systems is similar to that in the 
tions. 
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the periodic solutions of automatic 
case of ordinary differential equa- 

Note 2. Special procedure is required for the exceptional case where 
Equation (2) has a countable set of integral natural frequencies [ 1 1. 
We remark [ 4 1 that this case is realized when 

i.e. Equation (1) represents a system with delay. 

In conclusion I express my sincere gratitude to L.E. El’sgol’ts for 
proposing the subject and for his interest in the work. 
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