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We consider quasilinear systems of neutral type with constant coeffi-
cients and with constant positive deviations

1
dz{o) +p2=”§1a,,,-z‘m (C—T)=F O+ BF (L2 (2 —T0), - 2 (t-= T )

or, briefly

Uz=f+pf (1)
Here p is a small parameter, and
z)={a1(t) ...z, (), SO={1(), ... [ ()}, F=(Fy .. ,F)

“pj=““pjakﬂ (s,k=1,...,n)

The function F is continuous in ¢ and has a period 2# ; with a constant
small p and with values of x(t), x(t — rj) lying within a certain region
G of the domain of these variables, it has continuous partial derivatives
of the first order; the function f(t) is a continuous periodic function
of period 27.

With the aid of the principle of compressed mapping, we demonstrate
the existence of a unique periodic solution, which for ft = 0 reduces to
the solution of the corresponding generating equation. Nonresonant, re-
sonant and "exceptional" cases are represented [1 ].

1. Nonresonant case. We assume that no integral frequencies exist for
the characteristic equation

A(A)=ll (£+ 5] a ;e )+ i} a,;e ‘ =0 (2
=1 j=1
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corresponding to Equation (1).

We shall consider a.closed subset CP(O < t g 27 ) of such functions
for which 2{¥(0) = +{¥) (27 )i = 0, 1, ..., p); these functions are
located inside the interval (0, 2#) such that they are periodic with a
period 2w. In this sense we shall speak of periodic functions in the
domain %(—m< t <+ o).

We consider the generating system

Uz=f {3)

The left-hand side of (3) determines the operator U, having meaning
in every case for any function x in Cy. The value of U is an arbitrary
function in C.

It is easy to prove that U is a linear (i.e. additive and continuous)
operator. Since (2) has no integral frequencies, then Ux = 0 only for
=0,

indeed, the operator U exists and establishes a one-to-one correspond-
ence between the complete domains C; and C. In agreement with the theorem
of Banakh [2 ] the inverse operator‘U'd'is linear. It follows that

1o <celzd

Consequently, for a single periodic solution of the system (3) we
have the estimate

|2, (1) | < CM @)

where M is determined by the condition | f | < M. By use of the estimate
(4) we apply the principle of compressed mapping for sufficiently small
¢ to the equation

Uz =7 () + pF (2, 070 (0, 0 — 1) )

in a class of functions reducing for # = 0 to the solution £°(t) of the
generating system (3) (supposing that «°(:)€G ). From this, the theorem
follows.

Theorem 1. The system (1) in the nonresonant case has, for a suffi-
ciently small pu, a unique periodic solution of peried 2w, reducing for
# = 0 to the solution of the generating system (3).

2. Resonant case. Let Equation (2) have a finite number of integral
frequencies and let ¢i = C; exp iN‘(u = 1, «ve, r) corresponding to the
periodic solutions of the homogeneous system Uz = 6. In this case a
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periodic solution does not ordinarily exist and the function f(t) must
satisfy certain conditions.

Along with the system (3) we consider the conjugate system. According
to the theorem of Riss on the domain C, the linear functional is
an

sh=\ tha.  (han= D 1, b, )

[ 5=1

where %€V is a periodic function of ¢ with period 27 (¥, denotes the
set of all regular functions with ¢¥(0) = 8}, (f, d¢¥) is a scalar product
of the vector functions f and di, For determination of the conjugate
system we have U*z = g(Ux). We obtsin, after simple calculations

Urg=g(Ux)

n
d . ( d\ps (t + T
Z zg (1) d{“‘ ¥ ) Z 2 Lyixs Z 2.! Goins Py (2 + TJ')}

s==1

an
0

Consequently, U*g= 0 on the functionals with ¢;(t) = ¢s.*(:) - ¢%"(0L
where é * is a periocdic solution of the system

Fu=1 Rpe=] =1 f==1

q
D e Oy (A T) =0 (m=1.r) ()

=1

dwm ® om0, 2 a‘@m"{wt}
=1

Here alj‘ and ao-' are transposed matrices (the fundamental equation
corresponding to (5) has roots differing in sign from those for Equation
2.

Banakh established the theorem that the system Ur = f can be solved
only when g(f) = 0 follows from U*g = 8.

Indeed, for the system (3) to have a periodic solution in the resonant
case the function f(i) must satisfy the following r conditions:

it n

S D00, (At =0  (n=1...,1) 6)

o =1

Fuonetions f(¢) satisfying the conditions (6) evidently generate a
linear and closed set which we call N, Consequently, we have vy =
The solution of the system (3) may be written in the form

2 () = 2‘, M, e (1) + X (1) (X, ()< C M)

m=1

Here x;{t) is s particular solution of the homogeneous system ¢3), C*
1s a constant independent of the form of f(t), since according to the
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previously mentioned Banakh theorem the operator U is a homomorphism of
the domain C, on N.

The method of successive approximations leads in the case of resonance
to the following expressions:

Ue® =f () +pF @ 70 @20V (e -1y ) Q)
r
M= D M, Do, () +=z2) +uL (FID) (8)
m=]

Here FUI= 1) = F(e, 117Dy, 1"V - ), ), ana L (¢ D)
represents a particular solution of the system (7) corresponding to a
known function F(l"l) of time; the coefficients M.( ) are determined
from the condition of the absence of resonating terms on the right-hand
side of the system

P, (M0, .., MO, p)=& (FO, @ #)dt =0  (m=1,...,r) 9)
1]

If in the class of functions reducing to the solution of the generat-
ing system with g = 0 there exists a solution to the basic system (1),
then for p = 0 all z(l)(t) must reduce to x°(t) in the successive approxi-
mations to the exact solution xz(¢, p). As is evident from (8) and (9),
this requires that the constants ¥,°, ..., M;’ be determined from the
equation

3

\

P2 (M. MO0 = Fo(t2°(1),2° (1 — 7)), 0) @gn” (dL =0 (10)

OL/;l_i

i

For this, the condition

3P, ..., PO
Fars, o F0 (a1

must be fulfilled.

One may then show that application of the principle of compressed
mapping is similar to that in the work of Malkin [3 ]. The theorem
follows.

Theorem 2. In order that the system (1) have a solution x(t, p), re-
ducing for p = O to the solution of the generating system :°(t), it is
necessary that a unique periodic solution of (1) exist, reducing for
p = 0 to the solution of the generating system, with condition (11) being
satisfied to assure fulfilment of condition (10).
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Note 1. The problem of finding the periodic solutions of automatic

systems is similar to that in the case of ordinary differential equa-
tions.

Note 2. Special procedure is required for the exceptional case where
Equation (2) has a countable set of integral natural frequencies [11.
We remark [4 ] that this case is realized when

g0 1 =0 (i

i.e. Equation (1) represents a system with delay.

In conclusion I express my sincere gratitude to L.E. El’sgol’ts for
proposing the subject and for his interest in the work.
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